Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3.
نویسندگان
چکیده
Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the CNS, for which only limited therapeutic interventions are available. Because MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the current study, we tested whether inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or alleviate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts significantly reduced the clinical symptoms of myelin oligodendrocyte glycoprotein35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode alleviated clinical symptoms in a relapsing-remitting model of proteolipid protein139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to alleviate myelin oligodendrocyte glycoprotein35-55-induced EAE. These results demonstrate the isoform-selective effects of GSK3 on T cell generation and the therapeutic effects of GSK3 inhibitors in EAE, as well as showing that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS.
منابع مشابه
Lithium Controls Central Nervous System Autoimmunity through Modulation of IFN-γ Signaling
Inhibitors of glycogen synthase kinase 3 (GSK3) are being explored as therapy for chronic inflammatory diseases. We previously demonstrated that the GSK inhibitor lithium is beneficial in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. In this study we report that lithium suppresses EAE induced by encephalitogenic interferon-γ (IFN-γ)-producing T helper (...
متن کاملAlpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells
Objective(s): Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the ani...
متن کاملPotential involvement of glycogen synthase kinase (GSK)-3β in a rat model of multiple sclerosis: evidenced by lithium treatment
Glycogen synthase kinase (GSK)-3β has been known as a pro-inflammatory molecule in neuroinflammation. The involvement of GSK-3β remains unsolved in acute monophasic rat experimental autoimmune encephalomyelitis (EAE). The aim of this study was to evaluate a potential role of GSK-3β in central nervous system (CNS) autoimmunity through its inhibition by lithium. Lithium treatment significantly de...
متن کاملVitamin D3 influence the Th1/Th2 ratio in C57BL/6 induced model of experimental autoimmune encephalomyelitis
Objective(s): Multiple Sclerosis (MS) is known as a progressive inflammatory CNS disease. Cytokines belong to Th1 or Th2 family and inflammatory cells, play significant role in pathophysiology of MS. Thus, any treatment supposed to influence the relation between Th1 to Th2 cytokines expression. Although vitamin D has been prescribed as a therapeutic supplement of MS for a long time, it is not c...
متن کاملRegulation by Glycogen Synthase Kinase-3 of Inflammation and T Cells in CNS Diseases
Elevated markers of neuroinflammation have been found to be associated with many psychiatric and neurodegenerative diseases, such as mood disorders, Alzheimer's disease, and multiple sclerosis (MS). Since neuroinflammation is thought to contribute to the pathophysiology of these diseases and to impair responses to therapeutic interventions and recovery, it is important to identify mechanisms th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 190 10 شماره
صفحات -
تاریخ انتشار 2013